Edexcel Maths FP1

Topic Questions from Papers

Numerical Solutions

=
J

$$f(x) = 3\sqrt{x} + \frac{18}{\sqrt{x}} - 20$$

(a) Show that the equation f(x) = 0 has a root α in the interval [1.1, 1.2].

(2)

(b) Find f'(x).

(3)

(c) Using $x_0 = 1.1$ as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 3 significant figures.

(4)

4. Given that α is the only real root of the equatio	4.	Given that	α is the only	real root of	the equation
--	----	------------	----------------------	--------------	--------------

$$x^3 - x^2 - 6 = 0$$

(a) show that
$$2.2 < \alpha < 2.3$$

(2)

(b) Taking 2.2 as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)=x^3-x^2-6$ to obtain a second approximation to α , giving your answer to 3 decimal places.

(5)

(c) Use linear interpolation once on the interval [2.2, 2.3] to find another approximation to α , giving your answer to 3 decimal places.

(3)

2.	$f(x) = 3x^2 -$	11
∠	$\Gamma(x) = 3x -$	\bar{x}^2

(a) Write down, to 3 decimal places, the value of f(1.3) and the value of f(1.4).

The equation f(x) = 0 has a root α between 1.3 and 1.4

(b) Starting with the interval [1.3, 1.4], use interval bisection to find an interval of width 0.025 which contains α .

(3)

(1)

(c) Taking 1.4 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to α , giving your answer to 3 decimal places.

(5)

3.
$$f(x) = x^3 - \frac{7}{x} + 2, \quad x > 0$$

(a) Show that f(x) = 0 has a root α between 1.4 and 1.5

(2)

(b) Starting with the interval [1.4, 1.5], use interval bisection twice to find an interval of width 0.025 that contains α .

(3)

(c) Taking 1.45 as a first approximation to α , apply the Newton-Raphson procedure once to $f(x) = x^3 - \frac{7}{x} + 2$ to obtain a second approximation to α , giving your answer to 3 decimal places.

(5)

3.	$f(x) = 5x^2 - 4x^{\frac{3}{2}} - 6, x \geqslant 0$
••	1(x) - 3x + 7x + 0, $x > 0$

The root α of the equation f(x) = 0 lies in the interval [1.6, 1.8].

(a) Use linear interpolation once on the interval [1.6, 1.8] to find an approximation to α . Give your answer to 3 decimal places.

(4)

(b) Differentiate f(x) to find f'(x).

(2)

(c) Taking 1.7 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 3 decimal places.

(4)

Leave

(a)	Show that the equation $f(x) = 0$ has a root α between $x = 1$ and $x = 2$.	(2)
(b)	Starting with the interval $[1, 2]$, use interval bisection twice to find an interwidth 0.25 which contains α .	rval of
	width 0.23 which contains a.	(3)

4.	$f(x) = x^2 + \frac{5}{2x} - 3x - 1,$	$x \neq 0$
----	---------------------------------------	------------

(a) Use differentiation to find f'(x).

(2)

The root α of the equation f(x) = 0 lies in the interval [0.7, 0.9].

(b) Taking 0.8 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 3 decimal places.

(4)

(a)	Show that $f(x) = x^4 + x - 1$ has a real root α in the interval [0.5, 1.0].
	(2)
(b)	Starting with the interval $[0.5, 1.0]$, use interval bisection twice to find an interval of width 0.125 which contains α .
	(3)
(c)	 Taking 0.75 as a first approximation, apply the Newton Raphson process twice to f(x) to obtain an approximate value of α. Give your answer to 3 decimal places.

3.	$f(x) = x^2 + \frac{3}{4\sqrt{x}} - 3x - 7,$	x > 0
	7 1 1	

A root α of the equation f(x) = 0 lies in the interval [3, 5].

Taking 4 as a first approximation to α , apply the Newton-Raphson process once to f(x)to obtain a second approximation to α . Give your answer to 2 decimal places.

(6)

6.	$f(x) = \tan\left(\frac{x}{2}\right) + 3x - 6,$	$-\pi < x < \pi$
----	---	------------------

(a) Show that the equation f(x) = 0 has a root α in the interval [1, 2].

(2)

(b) Use linear interpolation once on the interval [1, 2] to find an approximation to α . Give your answer to 2 decimal places.

(3)

Leave		
blank		

$f(x) = 2x^{\frac{1}{2}} + x^{-\frac{1}{2}} - 5, \qquad x > 0$	
() P' 1 (1/)	
(a) Find $f'(x)$.	(2)
The counting f() 0 has a good in the intermed [4.5.5.5]	, ,
The equation $f(x) = 0$ has a root α in the interval [4.5, 5.5].	
(b) Using $x_0 = 5$ as a first approximation to α , apply the Newton-Raphson once to $f(x)$ to find a second approximation to α , giving your answer to 3 figures.	procedure significant
3 · · · · ·	(4)

2.	$f(r) = \cos(r^2) - r + 3$	$0 < r < \pi$

(a) Show that the equation f(x) = 0 has a root α in the interval [2.5, 3].

(2)

(b) Use linear interpolation once on the interval [2.5, 3] to find an approximation for α , giving your answer to 2 decimal places.

(3)

3. $f(x) = \frac{1}{2}x^4 - x^3 + x - 3$

(a) Show that the equation f(x) = 0 has a root α between x = 2 and x = 2.5

(2)

(b) Starting with the interval [2, 2.5] use interval bisection twice to find an interval of width 0.125 which contains α .

(3)

The equation f(x) = 0 has a root β in the interval [-2, -1].

(c) Taking -1.5 as a first approximation to β , apply the Newton-Raphson process once to f(x) to obtain a second approximation to β . Give your answer to 2 decimal places.

(5)

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	$(at^2, 2at)$	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$